Coming down from infinity for some population models

Vincent Bansaye

Ecole Polytechnique

19th june. CIRM, Luminy, Probability and biological evolution.
Some motivations in population dynamics or genetics

Coming down from infinity"=" regulation for large initial population.

- The effect of the competition arising in a large population [think of trees having a huge number of seeds].
 The short time behavior of genealogies in large population (such as Lambda coalescent, see Aldous, Schweinsberg, Berestycki, Berestycki, Limic, ...).

- Minimal conditions for persistence in a varying environment (WIP with Sylvie Méléard), scaling limits of individual based models.

- Geometric convergence to stationary distribution, Uniqueness of Quasi-Stationary Distribution (see [Van Dorn, Cattiaux & al] ...).
 Speed of convergence to the QSD (see [Champagnat, Villemonais, 15]).
Some motivations in population dynamics or genetics

Coming down from infinity"=" regulation for large initial population.

- The effect of the *competition* arising in a large population [think of trees having a huge number of seeds].
 The short time behavior of *genealogies* in large population (such as Lambda coalescent, see Aldous, Schweinsberg, Berestycki, Berestycki, Limic, ...).

- Minimal conditions for persistence in a *varying environment* (WIP with Sylvie Méléard), scaling limits of individual based models.

- Geometric convergence to stationary distribution, Uniqueness of *Quasi-Stationary Distribution* (see [Van Dorn, Cattiaux & al] ...).
 Speed of convergence to the QSD (see [Champagnat, Villemonais, 15]).
Coming down from infinity for birth and death processes and competition for one specie [joint work with S. Méléard and M. Richard].

Comparing a stochastic process to a dynamical system with non-expansive vector field and coming down from infinity.

Some example in dimension 2: (stochastic) Lotka Volterra competition model.
Evolution of the population size \((X_t : t \geq 0)\) as a jump process:

\[
\begin{align*}
 k &\rightarrow k + 1 \quad \textit{birth} \quad \text{at rate } \lambda_k \\
 k &\rightarrow k - 1 \quad \textit{death} \quad \text{at rate } \mu_k
\end{align*}
\]

We work under the extinction condition [Karlin McGregor 57]

\[
\sum_{k \geq 1} \frac{1}{\lambda_k \pi_k} = \infty, \tag{1}
\]

where

\[
\begin{align*}
 \pi_1 &= \frac{1}{\mu_1} \quad \text{and for } k \geq 2, \quad \pi_k = \frac{\lambda_1 \cdots \lambda_{k-1}}{\mu_1 \cdots \mu_k}.
\end{align*}
\]
Model

Evolution of the population size \((X_t : t \geq 0)\) as a jump process:

\[k \rightarrow k + 1 \quad \text{birth at rate } \lambda_k \]
\[k \rightarrow k - 1 \quad \text{death at rate } \mu_k \]

We work under the extinction condition [Karlin McGregor 57]

\[
\sum_{k \geq 1} \frac{1}{\lambda_k \pi_k} = \infty,
\] \quad (1)

where

\[
\pi_1 = \frac{1}{\mu_1} \quad \text{and for } \quad k \geq 2, \quad \pi_k = \frac{\lambda_1 \cdots \lambda_{k-1}}{\mu_1 \cdots \mu_k}.
\]
Coming down from infinity

Let $T_n = \inf\{ t \geq 0 : X_t = n \}$ and

$$S = \lim_{n \to \infty} \mathbb{E}_n(T_0) = \sum_{i \geq 1} \pi_i + \sum_{n \geq 1} \frac{1}{\lambda_n \pi_n} \sum_{i \geq n+1} \pi_i.$$

Proposition

The process comes down from infinity, in the sense that

$$\exists m, t > 0 : \inf_{k \in \mathbb{N}} \mathbb{P}_k(T_m < t) > 0$$

iff

$$S < \infty.$$

The weak limit of \mathbb{P}_n in $\mathcal{P}(\mathbb{D}([0, \infty), \mathbb{N} \cup \{\infty\}))$ as $n \to \infty$ exists and is denoted by \mathbb{P}_∞ and, as soon as the process comes down from infinity,

$$\forall t > 0 : X_t < \infty, \quad \text{while} \quad X_0 = \infty \quad \mathbb{P}_\infty \text{ a.s.}$$
Let $T_n = \inf\{ t \geq 0 : X_t = n \}$ and

$$S = \lim_{n \to \infty} \mathbb{E}_n(T_0) = \sum_{i \geq 1} \pi_i + \sum_{n \geq 1} \frac{1}{\lambda_n \pi_n} \sum_{i \geq n+1} \pi_i.$$

Proposition

The process comes down from infinity, in the sense that

$$\exists m, t > 0 : \inf_{k \in \mathbb{N}} \mathbb{P}_k(T_m < t) > 0$$

iff

$$S < \infty.$$

The weak limit of \mathbb{P}_n in $\mathcal{P}(\mathbb{D}([0, \infty), \mathbb{N} \cup \{\infty\}))$ as $n \to \infty$ exists and is denoted by \mathbb{P}_∞ and, as soon as the process comes down from infinity,

$$\forall t > 0 : X_t < \infty, \quad \text{while } X_0 = \infty \quad \mathbb{P}_\infty \text{ a.s.}$$
How does X come down from infinity?

We assume that

$$\mathbb{E}_{n+1}(T_n)/\mathbb{E}_\infty(T_n) \xrightarrow{n \to \infty} \alpha.$$

Theorem

i) If $\alpha > 0$ and $\lambda_n/\mu_n \to \ell \in [0, 1)$, then

$$\frac{T_n}{\mathbb{E}_\infty(T_n)} \xrightarrow{(d) n \to +\infty} \sum_{k \geq 0} \alpha (1 - \alpha)^k Z_k,$$

where $(Z_k)_k$ i.i.d. r.v. whose Laplace transform $G_{\ell,\alpha}$ is characterized by

$$\forall a > 0, \quad G_{\ell,\alpha}(a) \left[\ell (1 - G_{\ell,\alpha}(a(1 - \alpha))) + 1 + a(1 - \ell (1 - \alpha)) \right] = 1.$$

ii) If $\alpha = 0$ (+L^2 assumption), then

$$\frac{T_n}{\mathbb{E}_\infty(T_n)} \xrightarrow{n \to \infty} 1 \quad \text{in } \mathbb{P}_\infty - \text{probability.}$$
How does X come down from infinity?

We assume that $\frac{\mathbb{E}_{n+1}(T_n)}{\mathbb{E}_\infty(T_n)} \xrightarrow{n \to \infty} \alpha$.

Theorem

i) If $\alpha > 0$ and $\lambda_n/\mu_n \to \ell \in [0, 1)$, then

$$
\frac{T_n}{\mathbb{E}_\infty(T_n)} \xrightarrow{(d) \; n \to +\infty} \sum_{k \geq 0} \alpha (1 - \alpha)^k Z_k,
$$

where $(Z_k)_k$ i.i.d. r.v. whose Laplace transform $G_{\ell, \alpha}$ is characterized by

$$
\forall a > 0, \quad G_{\ell, \alpha}(a) \left[\ell (1 - G_{\ell, \alpha}(a(1 - \alpha))) + 1 + a(1 - \ell (1 - \alpha)) \right] = 1.
$$

ii) If $\alpha = 0$ (+L^2 assumption), then

$$
\frac{T_n}{\mathbb{E}_\infty(T_n)} \xrightarrow{n \to \infty} 1 \quad \text{in } \mathbb{P}_\infty - \text{probability.}
$$

Vincent Bansaye (Polytechnique)
A.s. convergence and central limit theorem under additional assumptions for ii).

Proofs relies on the decomposition of T_n as the infinite sum of independent r.v.+
- Convergence of Laplace exponent as fixed point following proofs for continuous fractions for i).
- Klesov asymptotic results for sum of i.i.d. r.v. for ii).

Examples

- If $\mu_n = \exp(\beta n)$ and $\lambda_n/\mu_n \to \ell$, then $T_n/\mathbb{E}_\infty(T_n) \to Z_{\ell,1-\exp(-\beta)}$ in distribution.
- If $\mu_n = \exp(n/\log n) \log n$, then $T_n/\mathbb{E}_\infty(T_n) \to 1$ in \mathbb{P}_∞ but not a.s.
- If $\mu_n = cn^\rho$ ($\rho > 1$) and $\lambda_n/\mu_n \to 0$, then the a.s. convergence and C.L.T. hold.
The speed of coming down from infinity

Define the speed

\[v_t := \inf\{n \geq 0; \mathbb{E}_\infty(T_n) \leq t\} \]

Corollary

Assuming also that \(\limsup_{n \to \infty} \lambda_n/\mu_n < 1 \), then

\[\frac{X_t}{v_t} \xrightarrow{t \downarrow 0} 1 \quad \text{in} \quad \mathbb{P}_\infty - \text{probability}. \]

Proof using the maximal height of the excursions of \(X \) during \([T_{n+1}, T_n)\) + inversion technic.

Example: \(\mu_n \sim cn^\varphi \), then a.s. convergence and C.L.T. for

\[t^{1/(\varphi-1)} X_t \quad \text{as} \quad t \downarrow 0. \]

\(\varphi = 2, \lambda_k = 0 \) yields Aldous speed of coming down from infinity for Kingman Coalescent (or logistic pure death process).
The speed of coming down from infinity

Define the speed

$$v_t := \inf\{n \geq 0; \ E_\infty(T_n) \leq t\}$$

Corollary

Assuming also that $\limsup_{n \to \infty} \frac{\lambda_n}{\mu_n} < 1$, then

$$\frac{X_t}{v_t} \overset{t \downarrow 0}{\longrightarrow} 1 \quad \text{in} \quad \mathbb{P}_\infty - \text{probability}.$$

Proof using the maximal height of the excursions of X during $[T_{n+1}, T_n)$ + inversion technic.

Example: $\mu_n \sim c n^\varphi$, then a.s. convergence and C.L.T. for

$$t^{1/(\varphi-1)} X_t \quad \text{as} \quad t \downarrow 0.$$
Random Perturbation of a dynamical system

Let X be a càdlàg process on $E \subset \mathbb{R}^d$ such that

$$X_t = x_0 + \int_0^t \psi(X_s)\,ds + R_t,$$

where ψ satisfies for each $x, y \in D \subset \mathbb{R}^d$ ($E \subset D$ and D open),

$$(\psi(x) - \psi(y))(x - y) \leq L \| x - y \|^2_2 \quad [L \text{ non-expansivity}]$$

and

$$R_t = A_t + M_t^c + M_t^d \quad (R_0 = 0)$$

where A_t is càdlàg adapted with finite variations, M_t^c is a continuous local martingale and M_t^d is a totally discontinuous local martingale.
Approximation by a dynamical system

\[X_t = x_0 + \int_0^t \psi(X_s)\,ds + R_t \]

and \(x \) the dynamical system associated with \(\psi \)

\[x_t = x_0 + \int_0^t \psi(x_s)\,ds \]

Proposition

As long as the dynamical system \(x_t \) is in \(D \) (i.e. for \(T \leq T_D(x_0) \)),

\[
\left\{ \sup_{t \leq T} \| X_t - x_t \|_2 \geq \epsilon \right\} \subset \left\{ T^R_L(\epsilon) \leq T \right\}
\]

where \(T^R_L(\epsilon) := \inf \left\{ t \geq 0 : \sup_{s \leq t} \| X_s - x_s \|_2 \leq \epsilon, \widetilde{R}_t \geq (\epsilon \exp(-2LT))^2 \right\} \)

and \(\widetilde{R}_t = 2 \int_0^t (X_s - x_s) \cdot dR_s + \| < M^c_t > \|_1 + \sum_{s \leq t} \| \Delta R_s \|_2^2 \).
Sketch of proof

Taking the L^1 norm of the quadratic variation of $X - x$ (or using Itô’s formula),

$$
\|X_t - x_t\|_2^2 = 2 \int_0^t (X_s - x_s)(\psi(X_s) - \psi(x_s))ds + 2 \int_0^t (X_{s-} - x_s).dR_s
$$

$$
+ \|<M_t^c>\|_1 + \sum_{s\leq t} \|X_s - X_{s-}\|_2^2.
$$

As ψ is L non-expansive on D, for each $t \leq T_D(x_0)$, noting $S_t = \sup_{s\leq t} \|X_s - x_s\|_2$,

$$
\|S_{t-}\leq\epsilon S^2_t \leq \|S_{t-}\leq\epsilon \left[2L \int_0^t \|X_s - x_s\|_2^2 ds + 2 \int_0^t (X_{s-} - x_s).dR_s
$$

$$
+ \|<M_t^c>\|_1 + \sum_{s\leq t} \|X_s - X_{s-}\|_2^2 \right].
$$

+ Gronwall lemma to get $\|S_{t-}\leq\epsilon S^2_t < \epsilon$ for $t < T^R_L(\eta)$.

Vincent Bansaye (Polytechnique)
Sketch of proof

Taking the L^1 norm of the quadratic variation of $X - x$ (or using Itô’s formula),

$$\| X_t - x_t \|^2 = 2 \int_0^t (X_s - x_s). (\psi(X_s) - \psi(x_s)) ds + 2 \int_0^t (X_s - x_s). dR_s$$

$$+ \| < M^c_t > \|_1 + \sum_{s \leq t} \| X_s - X_s^- \|^2.$$

As ψ is L non-expansive on D, for each $t \leq T_D(x_0)$, noting $S_t = \sup_{s \leq t} \| X_s - x_s \|_2$,

$$\| S_{t^-} \leq \epsilon \| S_t^2 \leq \| S_{t^-} \leq \epsilon \left[2L \int_0^t \| X_s - x_s \|^2 ds + 2 \int_0^t (X_s - x_s). dR_s
ight.$$

$$+ \| < M^c_t > \|_1 + \sum_{s \leq t} \| X_s - X_s^- \|^2 \right].$$

+ Gronwall lemma to get $\| S_{t^-} \leq \epsilon \| S_t^2 < \epsilon$ for $t < T^R_L(\eta)$.
Inequality for martingale

Writing

\[M_t = M_t^c + M_t^d \]

the local martingale and

\[S_t = \sup_{s \leq t} \| X_s - x_s \|_2, \]

we obtain by Markov inequality and (Doob) maximal inequality for martingales

\[
\mathbb{P}_{x_0} (S_T > \epsilon) \\
\leq \frac{Ce^{4LT}}{\epsilon^2} \left[\mathbb{E}_{x_0} \left(\left\| \int_0^T \mathbb{1}_{S_{s-} \leq \epsilon} \| dA_s \|_1 \right\|_2^2 \right) \right] \\
+ \mathbb{E}_{x_0} \left(\sup_{s \leq T} \mathbb{1}_{S_{s-} \leq \epsilon} \| < M_s^c > \|_1 \right) + \mathbb{E}_{x_0} \left(\sum_{s \leq T} \mathbb{1}_{S_{s-} \leq \epsilon} \| \Delta X_s \|_2^2 \right)
\]
Stochastic differential equations

\[X = (X^i : i = 1 \ldots d) \in \mathbb{D}([0, \infty), E) \] satisfies

\[X^i_t = x_0 + \int_0^t b^i(X_s) \, ds + \int_0^t \sigma^i(X_s) \, dB^i_s + \int_0^t \int \chi H^i(X_{s^-}, z) N(ds, dz) \]

where

- \(B \) is a \(d \) dimensional Brownian motion;
- \(N \) is a punctual Poisson measure independent of \(B \), with intensity \(dsq(dz) \) and \(\tilde{N} \) its compensated measure.

\[X_t = x_0 + \int_0^t \psi(X_s) \, ds + M_t \]

where \(M \) is a local martingale given by

\[M_t = \int_0^t \sigma(X_s) \, dB_s + \int_0^t \int \chi H(X_{s^-}, z) \tilde{N}(ds, dz) \]

and \(\langle M_t \rangle = \int_0^t \sigma(X_s)^2 \, ds + \int_0^t \int \chi H(X_{s^-}, z)^2 \, dsq(dz) \)
Stochastic differential equations

\[X = (X^i : i = 1 \ldots d) \in \mathbb{D}([0, \infty), E) \] satisfies

\[
X^i_t = x_0 + \int_0^t b^i(X_s) ds + \int_0^t \sigma^i(X_s) dB^i_s + \int_0^t \int_{\mathcal{X}} H^i(X_{s-}, z) \tilde{N}(ds, dz)
\]

where

- \(B \) is a \(d \) dimensional Brownian motion;
- \(N \) is a punctual Poisson measure independent of \(B \), with intensity \(dsq(dz) \) and \(\tilde{N} \) its compensated measure

\[
X_t = x_0 + \int_0^t \psi(X_s) ds + M_t
\]

where \(M \) is a local martingale given by

\[
M_t = \int_0^t \sigma(X_s) dB_s + \int_0^t \int_{\mathcal{X}} H(X_{s-}, z) \tilde{N}(ds, dz)
\]

and \(\langle M_t \rangle = \int_0^t \sigma(X_s)^2 ds + \int_0^t \int_{\mathcal{X}} H(X_{s-}, z)^2 dsq(dz) \)
Let F be a C^2 function such that its Jacobian matrix J_F is invertible on D. We set

$$b_F(x) = b(x) + J_F(x)^{-1} \left(\int_X [F(x + H(x, z)) - F(x)] q(dz) \right)$$

and the associated flow ϕ_F par

$$\phi_F(x_0, 0) = x_0, \quad \frac{\partial}{\partial t} \phi_F(x_0, t) = b_F(\phi_F(x_0, t)).$$

and

$$V_F(x) = (J_F(x)\sigma(x))^2 + \int_X [F(x + K(x, z)) - F(x)]^2 q(dz).$$

is giving the bracket of the martingale part.
Approximation by a dynamical system

\[\phi_F(x_0, 0) = x_0, \quad \frac{\partial}{\partial t} \phi_F(x_0, t) = b_F(\phi_F(x_0, t)) \]

\[\psi_F = (J_F b_F) \circ F^{-1} = \left(J_F b(\cdot) + \int_X [F(\cdot + H(x, z)) - F(\cdot)] q(dz) \right) \circ F^{-1} \]

Theorem

We assume that \(\psi_F \) is \(L \) non-expansive on \(F(D) \) (+some technical assumption). Then, for all \(x_0 \in D \)

\[
\mathbb{P}_{x_0} \left(\sup_{t \leq T \wedge T_D(x_0)} \| F(X_t) - F(\phi_F(x_0, t)) \|_2 > \epsilon \right)
\leq \frac{Ce^{4LT}}{\epsilon^2} \int_0^T \left[1 + \bar{V}_{F, \epsilon}(x_0, s) \right] ds,
\]

where \(\bar{V}_{F, \epsilon}(x_0, s) = \sup_{x \in E} \| V_F(x) \|_1 \cdot \| F(x) - F(\phi_F(x_0, s)) \|_2 \leq \epsilon \)
\[\phi_F(x_0, 0) = x_0, \quad \frac{\partial}{\partial t} \phi_F(x_0, t) = b_F(\phi_F(x_0, t)) \]

\[\psi_F = (J_F b_F) \circ F^{-1} = \left(J_F b(.) + \int_X [F(.) + H(x, z)) - F(.)] q(dz) \right) \circ F^{-1} \]

Theorem

*We assume that \(\psi_F \) is \(L \) non-expansive on \(F(D) \) (+some technical assumption). Then, for all \(x_0 \in D \)

\[
\mathbb{P}_{x_0} \left(\sup_{t \leq T \land T_D(x_0)} \| F(X_t) - F(\phi_F(x_0, t)) \|_2 > \epsilon \right) \leq \frac{Ce^{4LT}}{\epsilon^2} \int_0^T \left[1 + \bar{V}_{F,\epsilon}(x_0, s) \right] ds,
\]

where \(\bar{V}_{F,\epsilon}(x_0, s) = \sup_{x \in E} \frac{\| V_F(x) \|_1}{\| F(x) - F(\phi_F(x_0, s)) \|_2 \leq \epsilon} \).
Stochastically monotone model

Definition

For all \(x_0 \leq x_1, t \geq 0, a \in \mathbb{R} \),

\[
P_{x_0}(X_t \geq a) \leq P_{x_1}(X_t \geq a)
\]

Examples: birth and death process, \(\Lambda \) coalescent; random catastrophes IF the rate of catastrophe does not depend (or decreases) on the size of the population, diffusions ...

We also assume that \(F \) goes to \(\infty \) and \(b_F(x) \) is negative for \(x \) large enough.
Stochastically monotone model

Definition

For all $x_0 \leq x_1$, $t \geq 0$, $a \in \mathbb{R}$,

$$P_{x_0}(X_t \geq a) \leq P_{x_1}(X_t \geq a)$$

Examples: birth and death process, Λ coalescent; random catastrophes *IF* the rate of catastrophe does not depend (or decreases) on the size of the population, diffusions ...

We also assume that F goes to ∞ and $b_F(x)$ is negative for x large enough.
Criteria for instantaneous coming down from infinity

Proposition (In progress.)

Assume that X is stochastically monotone, ψ_F is L non expansive and

$$\int_0^\cdot \sup_{x_0 \in E} \bar{V}_F(x_0, s) < \infty.$$

The sequence \mathbb{P}_x converges weakly in $\mathcal{P}(\mathbb{D}_{EU\{\infty\}}([0, T]))$ as $x \to \infty$ ($x \in E$) to \mathbb{P}_∞.

(i) If $\int_0^\infty \frac{1}{-b_F(x)} < +\infty$, then

$$\forall t > 0 : X_t < \infty \text{ and } \lim_{t \downarrow 0^+} F(X_t) - F(x_t) = 0 \quad \mathbb{P}_\infty \text{ a.s.}$$

(ii) Otherwise $\mathbb{P}_\infty(\forall t > 0 : X_t = +\infty) = 1$.
Proposition (In progress.)

Assume that X is stochastically monotone, ψ_F is L non expansive and

$$\int_0^\infty \sup_{x_0 \in E} \bar{V}_F(x_0, s) < \infty.$$

The sequence \mathbb{P}_x converges weakly in $\mathcal{P}(\mathbb{D}_{E \cup \{\infty\}}([0, T]))$ as $x \to \infty$ ($x \in E$) to \mathbb{P}_∞.

(i) If $\int_{-\infty}^\infty \frac{1}{-b_F(x)} < +\infty$, then

$$\forall t > 0 : X_t < \infty \quad \text{and} \quad \lim_{t \downarrow 0^+} F(X_t) - F(x_t) = 0 \quad \mathbb{P}_\infty \ a.s.$$

(ii) Otherwise $\mathbb{P}_\infty (\forall t > 0 : X_t = +\infty) = 1$.
Two examples

- **Λ coalescent.** $X=$number of blocks.

 \[F(x) = \log(x), \quad \psi_F(x) \downarrow \quad V_F(x) \text{ bounded} \]

 and we recover [Berestycki, Berestycki, Limic 10]

 \[
 \lim_{t \downarrow 0} \log(X_t) - \log(v_t) = 0, \quad \text{i.e.} \quad \frac{X_t}{v_t} \to 1 \quad \mathbb{P}_\infty \text{ a.s.}
 \]

- **Birth and death processes.** $\mu_k = ck^\varrho$ ($\varrho > 1$), $\lambda_k - \lambda_n \leq C(k-n)$

 \[F(x) = x^{1/2-\epsilon}, \quad \psi_F(x) \downarrow, \quad V_F(x) \sim x^{\varrho-2\epsilon}, \quad \phi(x_0, t) \leq c.t^{1/(1-\varrho)} \]

 and setting $\phi(\infty, t) = [c(\varrho - 1)t]^{1/(1-\varrho)}$

 \[
 \lim_{t \downarrow 0} X_t^{1/2-\epsilon} - \phi(\infty, t)^{1/2-\epsilon} = 0 \quad \mathbb{P}_\infty \text{ a.s.}
 \]

Possible extension to multiple births, random catastrophes, ... and (logistic) Feller diffusion...
Two examples

- Λ coalescent. $X =$ number of blocks.

 $$F(x) = \log(x), \quad \psi_F(x) \downarrow \quad V_F(x) \text{ bounded}$$

 and we recover [Berestycki, Berestycki, Limic 10]

 $$\lim_{t \downarrow 0} \log(X_t) - \log(\nu_t) = 0, \text{ i.e. } X_t/\nu_t \to 1 \quad P_\infty \text{ a.s.}$$

- Birth and death processes. $\mu_k = c k^\varrho \ (\varrho > 1), \lambda_k - \lambda_n \leq C(k - n)$

 $$F(x) = x^{1/2-\epsilon}, \quad \psi_F(x) \downarrow, \quad V_F(x) \sim x^{\varrho-2\epsilon}, \quad \phi(x_0, t) \leq c t^{1/(1-\varrho)}$$

 and setting $\phi(\infty, t) = [c(\varrho - 1)t]^{1/(1-\varrho)}$

 $$\lim_{t \downarrow 0} X_t^{1/2-\epsilon} - \phi(\infty, t)^{1/2-\epsilon} = 0 \quad P_\infty \text{ a.s.}$$

Possible extension to multiple births, random catastrophes, ... and (logistic) Feller diffusion...
Two examples

- **Λ coalescent.** $X =$ number of blocks.

 $$F(x) = \log(x), \quad \psi_F(x) \downarrow \quad V_F(x) \text{ bounded}$$

 and we recover [Berestycki, Berestycki, Limic 10]

 $$\lim_{t \downarrow 0} \log(X_t) - \log(v_t) = 0, \text{ i.e. } \frac{X_t}{v_t} \to 1 \quad \mathbb{P}_\infty \text{ a.s.}$$

- **Birth and death processes.** $\mu_k = ck^\varrho (\varrho > 1), \lambda_k - \lambda_n \leq C(k - n)$

 $$F(x) = x^{1/2-\epsilon}, \quad \psi_F(x) \downarrow, \quad V_F(x) \sim x^{\varrho - 2\epsilon}, \quad \phi(x_0, t) \leq c.t^{1/(1-\varrho)}$$

 and setting $\phi(\infty, t) = [c(\varrho - 1)t]^{1/(1-\varrho)}$

 $$\lim_{t \downarrow 0} X_t^{1/2-\epsilon} - \phi(\infty, t)^{1/2-\epsilon} = 0 \quad \mathbb{P}_\infty \text{ a.s.}$$

Possible extension to multiple births, random catastrophes, ... and (logistic) Feller diffusion...
Two dimensional competition Lotka Volterra diffusion

In progress

\[
\begin{align*}
 dX_t^1 &= X_t^1(\tau_1 - aX_t^1 - cX_t^2)\,dt + \sigma_1 \sqrt{X_t^1} \,dB_t^1 \\
 dX_t^2 &= X_t^2(\tau_2 - bX_t^2 - dX_t^1)\,dt + \sigma_2 \sqrt{X_t^2} \,dB_t^2
\end{align*}
\]

with intraspecific competition \(a, b > 0\) and interspecific competition \(c, d \geq 0\).

We compare this process to dynamical system whose flow \(\phi_F = \phi\) given by

\[
\begin{align*}
 (x_t^1)' &= x_t^1(\tau_1 - ax_t^1 - cx_t^2) \\
 (x_t^2)' &= x_t^2(\tau_2 - bx_t^2 - dx_t^1)
\end{align*}
\]
Two dimensional competition Lotka Volterra diffusion

\[dX_t^1 = X_t^1 (\tau_1 - aX_t^1 - cX_t^2) dt + \sigma_1 \sqrt{X_t^1} dB_t^1 \]
\[dX_t^2 = X_t^2 (\tau_2 - bX_t^2 - dX_t^1) dt + \sigma_2 \sqrt{X_t^2} dB_t^2 \]

with intraspecific competition \(a, b > 0 \) and interspecific competition \(c, d \geq 0 \).

We compare this process to dynamical system whose flow \(\phi_F = \phi \) given by

\[(x_t^1)' = x_t^1 (\tau_1 - ax_t^1 - cx_t^2) \]
\[(x_t^2)' = x_t^2 (\tau_2 - bx_t^2 - dx_t^1) \]
Approximation by the flow coming down from infinity

Note that each component of X comes back to infinity and set

$$D_\epsilon = \{ x \in (0, \infty)^2 : x_1 \geq 2\epsilon, \ x_2 \geq 2\epsilon \}$$

and

$$d_\beta(x, y) = |x_1^\beta - y_1^\beta| + |x_2^\beta - y_2^\beta|.$$

Proposition

For any $\beta \in [0, 1)$ and $\epsilon > 0$,

$$\lim_{T \to 0} \sup_{T \geq 0 \ \ x_0 \in D_\epsilon} \mathbb{P}_{x_0} \left(\sup_{t \leq T \land T_{D_\epsilon}(x_0)} d_\beta(X_t, x_t) \geq \epsilon \right) = 0$$

The proof consists in gluing a collections of domains (cones) where

$$F_{\beta, \gamma}(x) = (x_1^\beta, \gamma x_2^\beta)$$

is non-expansive and apply the previous result.
Approximation by the flow coming down from infinity

Note that each component of X comes back to infinity and set

$$D_\epsilon = \{ x \in (0, \infty)^2 : x_1 \geq 2\epsilon, \ x_2 \geq 2\epsilon \}$$

and

$$d_\beta(x, y) = |x_1^\beta - y_1^\beta| + |x_2^\beta - y_2^\beta|.$$

Proposition

For any $\beta \in [0, 1)$ *and* $\epsilon > 0$,

$$\lim_{T \to 0} \sup_{x_0 \in D_\epsilon} \mathbb{P}_{x_0} \left(\sup_{t \leq T} \sup_{t \leq T \wedge T_{D_\epsilon}(x_0)} d_\beta(X_t, x_t) \geq \epsilon \right) = 0$$

The proof consists in gluing a collection of domains (cones) where

$$F_{\beta, \gamma}(x) = (x_1^\beta, \gamma x_2^\beta)$$

is non-expansive and apply the previous result.
(i-intraspecific) If $b > c$ and $a > d$, then there exists $x_\infty \in (0, \infty)^2$ such that for any $x_0 \in (0, \infty)^2$ and $\eta > 0$,

$$
\lim_{T \to 0} \lim_{r \to \infty} \mathbb{P}_{rx_0} \left(\sup_{\eta T \leq t \leq T} \| tX_t - x_\infty \|_2 \geq \epsilon \right) = 0.
$$

(ii-interspecific) If $c > b$ and $d > a$, then for any $\epsilon > 0$ and $\beta \in (0, 1)$,

$$
\lim_{T \to 0} \lim_{r \to \infty} \mathbb{P}_{rx_0} \left(\sup_{t \leq T} d_\beta(X_t, \phi(rx_0, t)) \geq \epsilon \right) = 0.
$$

(iii-unbalanced) If $b > c$ and $d > a$, then for any $T > 0$,

$$
\lim_{r \to \infty} \mathbb{P}_{rx_0} \left(\inf\{ t \geq 0 : X_t^2 = 0 \} \leq T \right) = 1
$$
Simulations: $a = b = 1$, $c = 0.3$, $d = 0.5$ (i-intra)

2 simulations and the dynamic system for 2 initial large values (10^5).
Simulations: $a = b = 1, c = 1.3, d = 1.4$ (ii-inter)

2 simulations and the dynamic system for 2 initial large values (10^5).
Two dimensional competition Lotka Volterra diffusion

Simulations: $a = b = 1$, $c = 1/3$, $d = 3$

2 simulations and the dynamic system for 2 initial large values (10^5).
Two dimensional competition Lotka Volterra diffusion

Thanks for your attention!

Vincent Bansaye (Polytechnique)