Kernel Methods for Optimal Change-Points Estimation in Derivatives

Ming-Yen CHENG and Marc RAIMONDO

In this article we propose an implementation of the so-called zero-crossing-time detection technique specifically designed for estimating the location of jump-points in the first derivative (kinks) of a regression function f. Our algorithm relies on a new class of kernel functions having a second derivative with vanishing moments and an asymmetric first derivative steep enough near the origin. We provide a software package which, for a sample of size n, produces estimators with an accuracy of order, at least, $O(n^{-2/5})$. This contrasts with current algorithms for kink estimation which at best provide an accuracy of order $O(n^{-1/3})$. In the software, the kernel statistic is standardized and compared to the universal threshold to test the existence of a kink. A simulation study shows that our algorithm enjoys very good finite sample properties even for low sample sizes. The method reveals kink features in real datasets with high noise levels at places where traditional smoothers tend to oversmooth the data.

Key Words: Beluga whale nursing time; Jump-points; Kink; Legendre polynomials; Motorcycle data; Optimal rate; Zero-crossing time.

1. INTRODUCTION

1.1 AIMS AND MOTIVATIONS

Our aim in this article is to detect and estimate the location of a jump in the first derivative of a regression function f. Although there is a large literature on the estimation of a jump-point in the function f, there are few methods available to estimate the location of a jump in the derivative of f, later referred as a kink. In many real datasets the kink scenario is relevant, however. In some applications there is a particular interest in knowing that a change has occurred in the derivative, for example, in time series analysis one can think of f as being a general underlying trend in the model where a kink corresponds to a change in the trend: from an upward trend to a downward trend or vice-versa. For generic scatterplot smoothing, the detection and precise location of kinks can be used to improve
1.2 Model and Assumptions

Suppose we observe an unknown function f in white noise,

$$dY(x) = f(x)dx + \sigma n^{-1/2} dW(x), \quad x \in I = [0, 1],$$ \hspace{1cm} (1.1)
where \(W(\cdot) \) is the standard Wiener process on \(I, \sigma > 0 \) is a constant, and \(n > 0 \). This model is the continuous equivalent of the nonparametric regression model where one observes \(Y(x_i) \) on a regular grid \(x_i = i/n, i = 1, \ldots, n; \) see Brown and Low (1996).

Throughout this article \(f^{(l)}(x) = \partial^l f(x)/\partial x^l \) denotes the derivative of order \(l \) of \(f \). The functional class we consider is \(\mathcal{F}_s(a) \) defined as follows. Let \(a \) be a constant (jump size) and \(s \geq 2 \) be an integer (smoothness away from the kink). We say that \(f \in \mathcal{F}_s(a) \) if \(f^{(1)}(x) \) has a single change-point (jump) at \(\theta, \theta \in (0, 1): \)

\[
[f^{(1)}](\theta) = f^{(1)}(\theta_+) - f^{(1)}(\theta-) = a, \tag{1.2}
\]

and

\[
f^{(1)}(\theta_+ + x_\pm) - f^{(1)}(\theta_\pm) = x_\pm f^{(2)}(\theta_\pm) + \frac{x_\pm^2}{2} f^{(3)}(\theta_\pm) + \cdots + \frac{x_\pm^{s-1}}{(s-1)!} f^{(s)}(\theta_\pm) + O(x_\pm^s), \tag{1.3}
\]

where \(f^{(1)}(\theta_+) = \lim_{x \to \theta, x > \theta} f^{(1)}(x), f^{(1)}(\theta_-) = \lim_{x \to \theta, x < \theta} f^{(1)}(x), x_+ > 0 \) and \(x_- < 0 \).

An element \(f \) of the class \(\mathcal{F}_s(a) \) is a function whose order 1 derivative has a jump of size \("a" \) at \(\theta \). Away from \(\theta \), \(f \) enjoys derivatives up to order \(s \). In the proof we further assume that the order \(s \) derivative of \(f \) is bounded by a positive constant \(L \). Condition (1.3) states that we can approximate \(f^{(1)}(x) \) from the left- or right-hand side of \(\theta \) using Taylor’s formula.

1.3 Results and Contribution

Recent theoretical results, derived in a general indirect setting, show that the optimal rate for estimating the location of a kink is

\[
r(n, s) \asymp n^{-s/(2s+1)}, \tag{1.4}
\]

where \(s \geq 2 \) indicates the smoothness of \(f \) away from the kink; see Goldenshluger et al. (2006) (GTZ hereafter). Although the rate optimal estimator of GTZ can be applied in general indirect problems, its computation in a direct setting is not straightforward and it has not been implemented in practice.

Our main contribution is to present a direct approach specifically aimed at finding the location of a jump in the derivative from direct observations (1.1). Our method builds on the optimal construction of GTZ; while less general our estimator is more suited for applications. By working with direct observations we use compactly supported high-order kernels to estimate the third-order derivative of \(f \). This offers significant computational advantages while preserving the optimal asymptotic property (1.4). It is worth noting that even in the case of slowest possible rate: \(s = 2 \), our estimator achieves an accuracy of order \(O(n^{-2/5}) \) which is much faster than the \(O(n^{-1/3}) \) accuracy of existing direct competitive methods. Our kernel approach is explicit, simple, and fast to compute. The software package used to prepare most figures and tables in this article is available from the authors’ home page. In the software the kernel statistic is standardized and compared to the universal threshold to test the existence of a kink. Our method extends naturally to multiple kink detection and estimation.
1.4 Related Work

When estimating the position of a single jump in \(f \) from observations (1.1), Korostelev (1987) constructed an optimal estimator which converges with the rate \(O(n^{-1}) \), Wang (1995) considered the estimation of cusps of order \(\alpha, 0 \leq \alpha < 1 \), deriving a wavelet-based method which converges with the rate \(O\left(\frac{n^{-1} \log n^{-1}}{\log(1+\eta)}\right)^{1/(1+2\alpha)}\), \(\eta > 1 \). Later Raimondo (1998) showed that the log-term could be removed from the previous rate by using a two-step method, deriving a jump and sharp cusp estimator which converges with the rate \(O(n^{-1/(1+2\alpha)}) \). The method and rate result of Raimondo (1998) also extends to \(\alpha \geq 1 \), that is, the estimation of a jump or a cusp in the derivative of \(f \) of order \(\lfloor \alpha \rfloor \), the largest integer smaller than \(\alpha \). For example, when estimating the location of a kink from direct observations (1.1) the estimator of Raimondo (1998) achieves an accuracy of order \(O(n^{-1/2}) \). For \(s \geq 2 \) this is slower than the optimal rate (1.4).

Other work on change-points in nonparametric regression include Müller (1992), Korostelev and Tsybakov (1993), Cline et al. (1995), Gijbels et al. (1999), and Huh and Carrièere (2002). The detection of change-points in nonparametric regression has recently received a lot of attention, see, for example, Antoniadis and Gijbels (2002), Gijbels and Goderniaux (2004a,b), Raimondo and Tajvidi (2004), and Huh and Park (2004). Work on change-points in nonparametric density estimation include Neumann (1997) and Huh (2002). Some more recent references on change-point methods include Park and Kim (2004) and Reiss (2004).

1.5 Article Organization

Section 2 introduces a new class of kernel functions designed for optimal kink estimation. Section 3 gives a step-by-step description of our detection and estimation method. Section 4 is concerned with numerical performance and application to real datasets. A mathematical appendix is given in Section A.

2. Kernels for Kink Estimation

We propose a new class of kernel functions specially designed for optimal kink estimation. First, we derive a set of sufficient conditions on the kernel to ensure optimal properties of our kink estimator. Second, we give an explicit formula to construct general high order polynomial kernels that can be used in practice.

Our method builds on the zero-crossing-time detection technique of GTZ and uses approximations to high-order derivatives of \(f \). For example, in the indirect setting GTZ use an approximation to the second derivative of \(f \) to locate the position of a jump in \(f \). Here we adapt this method and use an approximation to the third derivative of \(f \) to estimate the location of a kink in the direct setting.
2.1 KERNEL ESTIMATION OF DERIVATIVES

Let K be a compactly supported kernel function such that $K^{(3)}$ exists and is bounded. A generic kernel approximation of the third derivative of f may be written as

$$k_h(t) = h^{-4} \int_0^1 K^{(3)} \left(\frac{x-t}{h} \right) f(x) \, dx,$$

where $h > 0$ is a bandwidth. Under some mild smoothness assumptions we have, for small h, $k_h(t) \approx f^{(3)}(t)$. In case of noisy observations (1.1) we define the estimator

$$\hat{k}_h(t) = h^{-4} \int_0^1 K^{(3)} \left(\frac{x-t}{h} \right) dY(x).$$

The following result can be found in (Wand and Jones 1995, p. 49).

Proposition 1. The Gaussian random process $Z_h(t) = \hat{k}_h(t) - k_h(t)$, $t \in I$, satisfies

$$E(Z_h(t)) = 0, \quad \sigma_Z^2 = \sup_{t \in I} E[(Z_h(t))^2] \leq c_1 n^{-1} h^{-7},$$

where c_1 is a constant.

2.2 A SEPARATION RATE LEMMA

A key step of the zero-crossing-time technique is the so-called separation rate lemma; see GTZ. Here we propose a version of the separation rate lemma under a set of conditions (assumption $C_{1,s}$ below) milder than the Fourier domain conditions given by GTZ. This allows a simple implementation of the zero-crossing-time technique using compactly supported polynomial kernels as described in the next section. Of particular importance to kink estimation is the behavior of the first derivative of the kernel K near the origin as well as the number of vanishing moments of the second derivative of K. Some (sufficient) conditions which lead to the optimal rate of convergence for kink estimation are given in the following, where K' denotes the first derivative of K. These conditions depend on the smoothness of f away from the kink.

Assumption $C_{1,s}$

1. Support(K) = supp(K) = $[-1, 1]$ and $K^{(3)}$ is (at least) Lipschitz continuous.
2. $K'(x) = -K'(-x)$.
3. $K'(0) = K'(-1) = K'(1) = 0$, $K^{(2)}(-1) = K^{(2)}(1) = 0$.
4. If $s \geq 3$: $\int_{-1}^1 x^j K^{(2)}(x) \, dx = 0$, $j = 1, \ldots, s - 2$.
 (Note that Condition 2 implies that $\int_{-1}^1 K^{(2)}(x) \, dx = 0$)
5. $|K'(x)| \geq c_2 |x|$, for all $x \in [-q, q]$, for some constants q, c_2: $0 < q < 1$, $c_2 > 0$.
6. $K'(x) > 0$ on $[-b, 0]$, $0 < b < 1$, $K'(x)$ has a unique global maximum at $-q_*$, $-q_* \in [-b, 0]$.
 (By Condition 2, $K'(x) < 0$ on $[0, b]$ and has a unique global minimum at q_*, $q_* \in [0, b]$).
The separation rate lemma given next shows that the accuracy with which one can approximate the location of a kink using (2.1) depends on the smoothness of the underlying function away from the kink, provided that the kernel K is properly chosen.

Lemma 1. δ-separation rate. Let $f \in \mathcal{F}_s(a)$ and $K(\cdot)$ be a kernel satisfying $C_{1,s}$. In what follows the constants q and b depend only the kernel $K(\cdot)$. Let $h > 0$, $\delta > 0$ be such that $\delta < qh$. Let $A_{\delta,h} = \{ t : \delta < |t - \theta| < qh \}$ and $c_5 = c_5(a, K)$ be a sufficiently large constant. Then, there exist constants c_3, c_4 such that:

(a) $|k_h(\theta)| \leq c_3 h^{2s-3}$,

(b) for all $t \in A_{\delta,h}$ and $\delta \geq c_5 h^s$, $|k_h(t)| \geq c_4 \delta h^{-3}$,

(c) for all $t \in I$ such that $|\theta - t| > bh$, $|k_h(t)| \leq c_3 h^{2s-3}$.

Remark 1. Lemma 1 extends naturally to functions with a jump-point in derivatives of order $\alpha \geq 1$. Define assumption $C_{s,s}$ similarly as $C_{1,s}$ with $K^{(a+2)}$ replacing $K^{(s)}$, $K^{(a+1)}$ replacing $K^{(2)}$ and $K^{(a)}$ replacing $K^{(1)}$. Then Lemma 1 holds with $k_h(t) = k_h^s(t) = h^{-(a+3)} \int_{[0,1]} K^{(a+2)}(\frac{t-x}{h}) f(x) dx$.

2.3 General-Order Kernel Formula

We provide an explicit formula for a class of general-order kink estimation kernels by modification of the Legendre polynomials. First $K^{(2)}$ is constructed such that it satisfies condition $C_{1,s}$. Technical details are given in Section A. We begin with cases where s is an odd number, for $s = 3, 5, \ldots$, and $-1 \leq x \leq 1$, let

$$K^{(2)}(x) = \gamma_s \sum_{j=[s/2]+1}^{s+1} \alpha_{j,s} x^{2j-s+1}, \quad (2.4)$$

where the multiplicative constant $\gamma_s = (2s+3)!/(2^{s+3}(s-1)!(s+1)!)$ and the coefficients

$$\alpha_{j,s} = \frac{(-1)^{s/2+j+1}(2j)!}{j!(s-j+1)!(2j-s+1)!}. \quad (2.5)$$

The kink estimation kernel $K^{(3)}$ is simply the derivative of $K^{(2)}$,

$$K^{(3)}(x) = \gamma_s \sum_{j=[s/2]+1}^{s+1} \beta_{j,s} x^{2j-s}, \quad (2.6)$$

$$\beta_{j,s} = \frac{(-1)^{s/2+j+1}(2j)!}{j!(s-j+1)!(2j-s)!}. \quad (2.7)$$

Remark 2. Kernels in (2.4) and (2.6) also work for cases where s is an even number. Indeed, conditions $C_{1,s}$ and $C_{1,s+1}$ are equivalent. To see this note that, for $s = 2, 4, \ldots$, any kernel K satisfying $C_{1,s+1}$ meets all the requirements of $C_{1,s}$. Conversely, suppose that $K^{(2)}$ satisfies $C_{1,s}$ then Condition 2 implies that $K^{(2)}$ is an even function and we have
readily \(\int_{-1}^{1} x^{s-1} K^{(2)}(x) \, dx = 0 \). Hence \(K^{(2)} \) satisfies \(C_{1, s+1} \). In addition, we note that \(C_{1,1} \) is exactly the same as \(C_{1,3} \).

Example 1. Taking \(s = 3 \) in (2.4) and (2.6), we get, after simplification of the constant factor with polynomial coefficients, for any \(x, -1 \leq x \leq 1 \),

\[
K^{(3)}(x) = \frac{945}{32} \left(7x^5 - 10x^3 + 3x \right). \tag{2.8}
\]

The polynomial \(K(x) \) with third derivative (2.8) satisfies \(C_{1,3} \). By Remark 2, this kernel also satisfies \(C_{1,1} \) and \(C_{1,2} \). The third derivative (2.8) as well as the corresponding second and first derivatives are depicted in the left-hand side plots of Figure 3.

Example 2. Taking \(s = 5 \) in (2.4) and (2.6), we get, after simplification of the constant factor with polynomial coefficients, for any \(x, -1 \leq x \leq 1 \),

\[
K^{(3)}(x) = \frac{45045}{256} \left(-33x^7 + 63x^5 - 35x^3 + 5x \right). \tag{2.9}
\]

The polynomial \(K(x) \) with third derivative (2.9) satisfies \(C_{1,5} \). By Remark 2, this kernel also satisfies \(C_{1,4} \). The third derivative (2.9) as well as the corresponding second and first derivatives are depicted in the right-hand side plots of Figure 3.
Figure 4. Illustration of model (1.1) with $x_i = i/n$, $i = 1, \ldots, n$, with $n = 200$ and $\sigma = 0$ (top), $\sigma = 0.2$ (bottom). Left plots: a smooth function with no kink illustrates a function under H_0. Right plots: a smooth function with one kink at $\theta = 0.75$ illustrates a function under H_1.

3. KINK DETECTION AND ESTIMATION

The polynomial kernels introduced in the previous section have specific properties with respect to kink estimation. We start with the case of noiseless data where the convolution formula defining $k_h(t)$ at (2.1) approximates the third derivative of f. For a kernel $K(\cdot)$ satisfying $C_{1,s}$, we have the following properties: (i) a kink in f corresponds to the zero-crossing time of $k_h(t)$; (ii) the zero-crossing time of $k_h(t)$ is located between its maximum and minimum. In the case of noisy data we take (2.2) as an estimator of $k_h(t)$ and use the bandwidth parameter h to smooth out the noise. We illustrate the step-by-step implementation of our method using simulated examples depicted in Figures 4, 5, and 6.

(a) Localization step. Using $C_{1,s}$, the approximation (2.1) to $f^{(3)}(t)$ may be written as

$$k_h(t) = L_h(t) + O(h^{t-3}),$$

where

$$L_h(t) = (\pm a) h^{-2} K'(\frac{\theta - t}{h}).$$

Suppose that f has a unique kink of size $a > 0$ then, by properties of K', we see that $L_h(t)$ has a unique maximum at $t^* = \theta + hq_*$ and a unique minimum at $t_* = \theta - hq_*$ (vice-versa
Figure 5. Illustration of the zero-crossing-time technique with the noisy data of Figure 4. Top plots: raw data. On the right-hand side top plot a thick vertical line indicates the location of a kink. Middle plots, plain curve: standardized kernel estimate (3.7) with $h = 0.3$; dashed lines: universal threshold $\pm \lambda = \sqrt{2 \log n} = \pm 3.25$. Using the test (3.9) on the left-hand side data no kink is detected; on the right-hand side data, one kink is detected and located at $\hat{\theta} = 0.733$ by minimization (3.10) within the interval \hat{A}_h.

if $a < 0$). By exploiting properties of K' near the origin,

$$L_h(t_*) = -C h^{-2}, \quad L_h(t^*) = C h^{-2},$$

for some positive constant C which depends on a and q^* (see $C_{1,8}$, Condition 5). From Proposition 1, with large probability,

$$\hat{k}_h(t) = L_h(t) + O(h^{4/3}) + O(n^{-1/2}h^{-7/2}).$$

Combining (3.3) and (3.4) we conclude that, if the bandwidth h is chosen large enough so that

$$h \asymp n^{-1/3} - \eta$$

for some $\eta > 0$, (3.5)

then $\hat{k}_h(t)$ has a unique maximum near t^* and a unique minimum near t_*, and we set

$$\hat{t}_* = \arg \min_{t \in I} \hat{k}_h(t), \quad \hat{t}_* = \arg \max_{t \in I} \hat{k}_h(t).$$

(3.6)

By construction, the interval $[\hat{t}_*, \hat{t}^*]$ has size $O(h)$ and contains θ with high probability. This is illustrated in the right-hand side middle plot of Figure 5.

(b) Kink detection with universal thresholding. The maximum and the minimum at (3.6) can also be used to support the kink scenario. More formally, we can test the hypothesis $H_0 : f^{(1)}$ is smooth (continuous) against $H_1 : f^{(1)}$ has at least one jump. To do so
Figure 6. Illustration of model (1.1) with a smooth function with two kinks located at \(\theta_1 = 0.18 \) and \(\theta_2 = 0.75 \); \(x_i = i/n, i = 1, \ldots, n = 200 \) (left plots) and \(n = 1,000 \) (right plots); top plots with \(\sigma = 0 \); mid-row left-hand side with \(\sigma = 0.2 \); mid-row right-hand side with \(\sigma = 0.5 \). Bottom plots, plain curve: standardized kernel estimate (3.7) with \(h = 0.2 \); dashed lines: universal threshold \(\pm \lambda = \pm 3.25 \) (left), \(\pm \lambda = \pm 3.72 \) (right). All the kinks are detected by the test (3.9) and located by searching the zero-crossing time (3.10) within each of the corresponding intervals \(\hat{A}_h \). This yields \(\hat{\theta}_1 = 0.185, \hat{\theta}_2 = 0.74 \) (left-hand side), \(\hat{\theta}_1 = 0.192, \hat{\theta}_2 = 0.722 \) (right-hand side).

we standardize the kernel estimate (2.2) and compare its extrema to the so-called universal threshold in a fashion similar to that of Wang (1995); see also Donoho et al. (1995) and Raimondo and Tajvidi (2004). The idea is that, under \(H_0 \), \(f(1) \) is continuous so that for small \(h \) our estimator \(\hat{k}_h(t) \) is dominated by noise when \(\hat{L}_h(t) = 0 \); see (3.4). It is well known that the maximum of a standardized Gaussian sequence goes to infinity no faster than \(O(\sqrt{2 \log n}) \); see, for example, Wang (1995). Introducing a standardized version of our kernel estimate,

\[
T_h(t) = \sigma^{-1} n^{1/2} h^{3/2} \hat{k}_h(t) / \left(\int (K^{(3)}(x))^2 dx \right)^{1/2},
\]

and letting \(I_n = \{ i/n, i = 1, \ldots, n \} \), we have, for any \(h \) small enough and under \(H_0 \),

\[
\lim_{n \to \infty} P \left(\max_{t \in I_n} T_h(t) \geq \sqrt{2 \log n} \right) = 0.
\]

On the other hand, if \(f^{(1)} \) has a jump we see from (3.4) that \(\hat{L}_h(t^*) \geq C n^{1/2} h^{3/2} \), hence for any bandwidth \(h \) satisfying (3.5) we have \(T_h(t^*) > \lambda = \sqrt{2 \log n} \). By symmetry we also have that \(T_h(t) < -\lambda \). We detect the presence of a kink when

\[
\Phi = \mathbf{1} \left(\max_{t \in I_n} |T_h(t)| \geq \sqrt{2 \log n} \right)
\]

(3.9)
takens the value 1. In practice, the test (3.9) and the localization step (3.6) are done simultaneously, as illustrated in the middle plots of Figure 5 and Figure 6.

(c) Search for zero-crossing time. If the test (3.9) takes the value 1 we derive an estimate of the kink location using the zero-crossing-time technique (3.10) as illustrated in the right-hand side bottom plot of Figure 5. The idea is that within the interval \(\hat{A}_h = [\hat{t}_*, \hat{t}_*^*] \), \(\hat{k}_h(t) \approx k_h(t) \) so that we can apply the separation rate lemma to locate the zero-crossing time of \(k_h(t) \). By construction this occurs at \(t = \theta \), see (3.2). Hence, applying the separation rate lemma we can locate \(\theta \) with an accuracy of order \(\delta, \delta < h \). This is done by minimizing \(|\hat{k}_h(t)| \) within \(\hat{A}_h \):

\[
\hat{\theta} = \arg \min_{t \in \hat{A}_h} |\hat{k}_h(t)| = \arg \min_{t \in \hat{A}_h} |\hat{T}_h(t)|.
\]

(3.10)

Comparing bounds (3.4) with those of lemma 1 we see that the minimum at (3.10) is well defined provided that

\[
\delta h^{-3} \geq C'h^{-3} \quad \text{and} \quad \delta h^{-3} \geq C''n^{-1/2}h^{-7/2},
\]

(3.11)

where \(C', C'' \) are constants. The best rate is obtained by choosing \(\delta \) as small as possible such that the two bounds at (3.11) hold. The left-hand side inequality at (3.11) gives \(\delta \approx h^s \) which, once substituted into the right-hand side inequality, gives the optimal choice of the bandwidth,

\[
h_{opt} \approx n^{-1/(2s+1)},
\]

(3.12)

deriving an accuracy of order

\[
\delta_{opt} = h_{opt}^s \approx n^{-s/(2s+1)}.
\]

(3.13)

Note that the optimal bandwidth (3.12) satisfies condition (3.5).

Remark 3. From \(h \) to \(h^2 \). It is worth noting that the improvement in the estimation accuracy achieved from Step (a) to Step (c) is quite important even for small \(s \). For example, if \(s = 2 \) the accuracy derived in Step (a) is \(O(h) \) whereas the accuracy derived in Step (c) is \(O(h^2) \). This is confirmed by the simulation results of Section 4.

Remark 4. Asymptotic properties. It follows from the minimax theory of GTZ that our kink estimator is rate-optimal since the rate (3.13) cannot be improved by any estimator. This result extends naturally to functions with a jump-point in higher derivatives by substituting \(\hat{k}_h \) in (3.6) and (3.10) with \(\hat{k}_h^{(\alpha)} \) as in Remark 1 of Section 2. In the latter case, we can estimate the jump-point with an accuracy of order \(O(n^{-s/(2s+2\alpha-1)}) \). A derivation of the multiplicative constant term in (3.13) may be guided by the preliminary work of GTZ.

Remark 5. Multiple kink detection and estimation. An attractive feature of our estimation method is that it extends naturally to the multiple kink scenario, thanks to the test (3.9). This is illustrated in Figure 6 with two different noise levels. The first step is to compute the standardized statistic (3.7) and locate (any) exceedances over the universal threshold \(\lambda = \sqrt{2\log n} \). The second step is to search the zero-crossing time locally within each interval \(\hat{A}_h \) where a kink has been detected.
4. NUMERICAL PERFORMANCE

4.1 IMPLEMENTATION

In the software the convolution (2.2) is computed in \(O(n) \)-steps for direct observations (1.1) on a regular grid \(x_i = i/n, i = 1, \ldots, n \). It is anticipated that future versions of the software will include extension to irregular grid design or random grid using standard kernel techniques such as including the design density in (2.2). As in any change-points estimation problem one needs to deal with edge effects for time points \(x \) near 0 or 1. This should be done prior to the localization/minimization steps (3.6) and (3.10). In the software the kernel estimator (3.7) is computed for \(h/2 \leq x \leq 1 - h/2 \). Better results may be possible by using appropriate boundary kernels, but this is outside the scope of the article.

4.2 TUNING

The main tuning parameter is the bandwidth \(h \) which is chosen so that signal dominates noise in (3.4). As usual this is a matter of trade-off between bias and variance: a too large bandwidth reduces the variance but increases the bias and vice-versa. “Differentiation” is known to amplify noise effects (see Proposition 1) hence the bandwidths used to estimate derivatives are typically larger than those used to estimate the function \(f \). There are some data-driven methods for choosing bandwidths in derivative estimation, for example, the adaptive plug-in method of Herrmann (1997, 2003). These methods can be used to set the bandwidth in kink estimation as the statistic (2.2) estimates the third derivative of \(f \). There are no universal answers as to which is the best bandwidth to use in practice and this of course depends on the sample size, noise level, and signal-to-noise ratio (SNR). Our simulation results indicate that, when the design range is scaled to \(x \in [0, 1] \), any value of \(h \) within the range \(0.2 \leq h \leq 0.3 \) produces good results for data sets where the SNR is greater than 2dB.

\[
\text{SNR}_{(dB)} = 10 \log_{10} \left(\frac{||f||^2}{\sigma^2} \right) .
\]

(4.1)

Larger bandwidths may be used for smaller SNR and vice-versa.

4.3 SIMULATION STUDY

We study finite sample properties of our kink detection and estimation method using the degree 5 kernel (2.8) and the two test functions depicted in Figure 4. The left-hand plot shows a smooth function with no kink, which represents a function under \(H_0 \); the right-hand plot shows a smooth function with one kink at \(\theta = 0.75 \), which represents a function under \(H_1 \). In each scenario (\(H_0 \) or \(H_1 \)) we use two sample sizes (\(n = 200, n = 1,000 \)) and three noise levels (\(\sigma = 0.2, 0.35, \) and 0.5). In this experiment the SNR (4.1) is between 2dB and 5dB. For lower SNR it becomes very difficult to detect and estimate kinks whereas for larger SNR it is quite easy to detect and estimate kinks. For this experiment (2dB \(\leq \) \text{SNR} \(\leq \) 5dB) any bandwidth \(h \) within the range \(0.2 \leq h \leq 0.3 \) gave very good results. Smaller bandwidths yield smaller power and larger bandwidths yield
larger false alarm rate. Using 1,000 replications of model (1.1) under H_1 and under H_0 (as previously described) we computed the Monte Carlo approximation to the false alarm rate, $P_{H_0}(\text{accept } H_1)$, of the test (3.9) and the Monte Carlo approximation to the power, $P_{H_1}(\text{accept } H_1)$, of the test (3.9). Under the H_1 scenario we also computed the Monte Carlo approximation to the root mean square error (RMSE) of the kink estimator (3.10). The results are summarized in Table 1.

Analysis of the results

The pattern seen in Table 1 is consistent with the theoretical properties of the bandwidths (3.5) and (3.12). First, we see that larger bandwidths give better results in lower SNR and vice versa. Second, we see the RMSE decreases as the sample size increases. Importantly, we see that the accuracy of the method is by far superior to the size of the bandwidth $O(h)$ and that relatively large bandwidths produce very good results. This property allows us to detect and estimate kinks in rather large noise levels as illustrated in Figure 5. We also see that the larger bandwidth $h = 0.3$ yields better power but produces more false alarms than $h = 0.2$.

4.4 Application to Real Data

We illustrate our kink detection and estimation method using some benchmark examples borrowed from the smoothing literature: (a) the nursing time of beluga whale dataset (Simonoff 1996), and (b) the motorcycle dataset (Silverman 1985). The two datasets are depicted in Figure 1 and Figure 2 as well as in the top plots of Figure 7 where they have been analyzed for kink detection and location. For comparison purposes we depicted in Figure 1 and Figure 2 a kernel smoothing of the data after kink detection and estimation (plain curve) as well as a kernel smoothing of the data using the *lokern* software of Herrmann (2003) which produces nonparametric fits with a locally varying bandwidth (dashed curve).

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Sample size</th>
<th>sd (SNR)</th>
<th>$P_{H_0}(\text{accept } H_1)$</th>
<th>$P_{H_1}(\text{accept } H_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 0.2$</td>
<td>$n = 1000$</td>
<td>$\sigma = 0.2$ (10dB)</td>
<td>0.043</td>
<td>0.992</td>
</tr>
<tr>
<td>$h = 0.2$</td>
<td>$n = 1000$</td>
<td>$\sigma = 0.35$ (5dB)</td>
<td>0.017</td>
<td>0.436</td>
</tr>
<tr>
<td>$h = 0.2$</td>
<td>$n = 1000$</td>
<td>$\sigma = 0.5$ (2dB)</td>
<td>0.014</td>
<td>0.14</td>
</tr>
<tr>
<td>$h = 0.2$</td>
<td>$n = 200$</td>
<td>$\sigma = 0.2$ (10dB)</td>
<td>0.07</td>
<td>0.43</td>
</tr>
<tr>
<td>$h = 0.2$</td>
<td>$n = 200$</td>
<td>$\sigma = 0.35$ (5dB)</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>$h = 0.2$</td>
<td>$n = 200$</td>
<td>$\sigma = 0.5$ (2dB)</td>
<td>0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>$h = 0.3$</td>
<td>$n = 1000$</td>
<td>$\sigma = 0.2$ (10dB)</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>$h = 0.3$</td>
<td>$n = 1000$</td>
<td>$\sigma = 0.35$ (5dB)</td>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>$h = 0.3$</td>
<td>$n = 1000$</td>
<td>$\sigma = 0.5$ (2dB)</td>
<td>0.07</td>
<td>0.87</td>
</tr>
<tr>
<td>$h = 0.3$</td>
<td>$n = 200$</td>
<td>$\sigma = 0.2$ (10dB)</td>
<td>0.185</td>
<td>0.995</td>
</tr>
<tr>
<td>$h = 0.3$</td>
<td>$n = 200$</td>
<td>$\sigma = 0.35$ (5dB)</td>
<td>0.080</td>
<td>0.583</td>
</tr>
<tr>
<td>$h = 0.3$</td>
<td>$n = 200$</td>
<td>$\sigma = 0.5$ (2dB)</td>
<td>0.063</td>
<td>0.246</td>
</tr>
</tbody>
</table>
A. Nursing time of beluga whale calf. The successful nursing of a beluga whale calf by its natural mother in captivity is an important concern for zoological parks and for the continued survival of the captive beluga population; see Russell et al. (1997). A male beluga calf named Hudson was born at the Aquarium for Wildlife Conservation in Brooklyn, New York on August 7, 1991. The data examined here, see Figure 1 and the right-hand side of Figure 7, corresponds to roughly the first 55 days of Hudson’s life. In this study, the nursing time, that is, total suckling time in seconds, was recorded every six hours providing us with a sample of size $n = 224$. A rough estimate of the SNR of these data shows that it is greater than 2dB. We applied our kink detection and estimation method with $h = 0.2$, which yields a small false alarm rate. The dataset tested positive with one kink located at $\hat{\theta} = 0.1614$ (36th observation). This suggests that a sharp change in Hudson’s nursing behavior occurred around the ninth day of his life. An examination of the scatterplot in Figure 1 shows that the nursing time rises smoothly up until the ninth day where there is a sharp peak followed by a sudden drop. These results are consistent with the studies on beluga whales of Russell et al. (1997) and Simonoff (1996, p. 160), where it was noted that the nursing time typically peaked at around 7–10 days postpartum and then declined over time. An examination of the scatterplot smoothers in Figure 1 shows a second dip in Hudson’s nursing time at around 30–35 days ($0.55 \leq t \leq 0.6$); this was later revealed to
correspond to a bacterial infection; see Russell et al. (1997). A close inspection of our third derivative estimate \(\hat{k}_h(t) \) in the left-hand side, bottom plot of Figure 7 shows that the zero-crossing time following the second largest value of \(\hat{k}_h(t) \) is around \(t = 0.6 \) corresponding to the 35th day of Hudson’s life, which is consistent with previous findings of Russell et al. (1997) and Simonoff (1996, p. 160). Our test statistic indicates that this second drop in nursing time is clearly not as significant as the first one and the fits in Figure 1 show that it is well captured by kernel smoothing with a local variable bandwidth.

B. Motorcycle data. These data correspond to \(n = 133 \) observations of acceleration readings taken through time in an experiment on the efficiency of helmets during impact; see Figure 2 and the right-hand side of Figure 7. The experiment simulates a motorcycle crash and was described in detail by Schmidt et al. (1981). In this study the observations are all subject to errors and it is of interest both to discern the general shape of the underlying acceleration curve and to draw inference about its minimum and maximum values. In a seminal article Silverman (1985) investigated this dataset using spline smoothing methods. Spline smoothers capture very well the general shape of the acceleration curve, and enjoy nice data-driven tuning. However, as noted in the discussion of Silverman (1985), spline smoothers tend to oversmooth the data over extremely high curvature regions. The resulting estimates have a large bias at places where the local curvature is unusually large or worse if the curve has a kink. This phenomenon renders statistical inference about minimum and maximum difficult. Modern software, for example, lokern of Herrmann (2003), which produces kernel estimators with locally varying bandwidths can enjoy more curvature around sharp turns than traditional smoothers. Nevertheless, locally varying the bandwidth in a data-driven fashion as was done in Figure 1 and in Figure 2 fails to capture extreme curvature features or kinks. More recently, Gijbels and Goderniaux (2004b) studied the motorcycle dataset using a change-point model which reveals kink features in this dataset.

We applied our kink detection and estimation method with \(h = 0.2 \) and \(h = 0.3 \). For \(h = 0.3 \) two kinks, located at \(\hat{\theta}_1 = 0.48 \) (65th observation) and \(\hat{\theta}_2 = 0.6992 \) (93rd observation), were detected; see the right-hand side plots of Figure 7. These results are consistent with the fit of Gijbels and Goderniaux (2004b). The cross-validation method of Gijbels and Goderniaux (2004b) also suggests that there might be a third kink at the time of impact which can also be seen as the first zero-crossing time on the right-hand side bottom plot of Figure 7, although much less significant than the other two. From the physical point of view the underlying acceleration curve may not have kinks, but sharp turns can be oversmoothed by traditional smoothers whereas they can be captured by fitting kinks to the data, as illustrated in Figure 2.

4.5 CONCLUDING REMARKS

These preliminary results on kink estimation are quite promising as the method enjoys good computational and theoretical properties. The zero-crossing-time technique produces fine location estimates of sharp curvature features in real datasets with high noise levels.
A. MATHEMATICAL APPENDIX

A.1 CONSTRUCTION OF $K^{(2)}$ VIA LEGENDRE POLYNOMIALS

To find a general order $K^{(2)}$ satisfying condition $C_{1,s}$ for every $s = 3, 5, \ldots$, we restrict to polynomials of degree $s + 3$, supported on $[-1, 1]$ and having $K^{(3)}(-1) = K^{(3)}(1) = 0$. These extra constraints are very mild considering condition $C_{1,s}$ and that $K^{(3)}$ is the kernel used in kink estimation. Our construction uses the Legendre polynomials on $[-1, 1]$:

$$P_i(x) = \frac{d^i}{dx^i}(1 - x^2)^j \|_{-1 \leq x \leq 1} = \sum_{j=0}^{i} p_{i,j} x^j \|_{-1 \leq x \leq 1}, \ i = 0, 1, 2, \ldots$$

Denote $\mu_j = \int x^j K^{(2)}(x) \, dx$, $j = 0, 1, 2, \ldots$, and write

$$K^{(2)}(x) = \sum_{i=0}^{s+3} a_i \ P_i(x).$$

Without loss of generality, assume that $|\mu_{s-1}| = 1$. Then $K^{(2)}$ has a unique global minimum at zero by taking $\mu_{s-1} = (-1)^{[s/2]+1}$. From the moment conditions,

$$a_i ||P_i||^2 = \int_{-1}^{1} P_i(x) \ K^{(2)}(x) \, dx$$

$$= \begin{cases} 0, & 0 \leq i \leq s - 2 \\ (-1)^{[s/2]+1} \ p_{i,s-1}, & i = s - 1 \\ (-1)^{[s/2]+1} \ p_{i,s-1} + \sum_{j=1}^{i} p_{i,j} \mu_j, & i = s, s + 1, s + 2, s + 3 \end{cases}$$

whence

$$K^{(2)}(x) = \sum_{i=s-1}^{s+3} \frac{1}{||P_i||^2} \left((-1)^{[s/2]+1} \ p_{i,s-1} + \sum_{s \leq j \leq i} p_{i,j} \mu_j \right) P_i(x). \quad (A.1)$$

Combining (A.1), the conditions that $K^{(2)}(-1) = K^{(2)}(1) = K^{(3)}(-1) = K^{(3)}(1) = 0$ and the facts that

$$P_i(1) = i! (-2)^i, \quad P_i(-1) = i! 2^i, \quad P'_i(1) = -i(i+1)! (-2)^{i-1}, \quad P'_i(-1) = i(i+1)! 2^{i-1}$$

we obtain a system of linear equations for μ_s, \ldots, μ_{s+3}

$$0 = \sum_{i=s-1}^{s+3} \frac{1}{||P_i||^2} \left((-1)^{[s/2]+1} \ p_{i,s-1} i! (-2)^i + \sum_{s \leq j \leq i} p_{i,j} \mu_j i! (-2)^j \right)$$

$$0 = \sum_{i=s-1}^{s+3} \frac{1}{||P_i||^2} \left((-1)^{[s/2]+1} \ p_{i,s-1} i! 2^i + \sum_{s \leq j \leq i} p_{i,j} \mu_j i! 2^j \right)$$
Substituting (A.2), (A.3), and (A.4) back to (A.1) yields

\[
0 = \sum_{i=1}^{s+3} \frac{1}{||P_i||^2} \left\{ (-1)^{\lfloor s/2 \rfloor + 1} p_{i,s-1} i(i+1)! (-2)^{i-1} \right. \\
\left. + \sum_{s \leq j \leq i} p_{i,j} \mu_j i(i+1)! (-2)^{j-1} \right\}
\]

which implies that

\[
0 = \mu_s = \mu_{s+2}
\]

\[
\mu_{s+1} = -\frac{(-1)^{\lfloor s/2 \rfloor + 1} p_{s+1,s-1}}{2} \frac{p_{s+1,s-1} (2s+3)(s-1)! ||P_{s+1}||^2}{2(2s+5)(s+1)! ||P_{s+1}||^2}
\]

\[
\mu_{s+3} = \frac{(-1)^{\lfloor s/2 \rfloor + 1} ||P_{s+3}||^2}{16 p_{s+3,s+3} ||P_{s+1}||^2 (2s+5)(s+3)!} p_{s+3,s-1} (2s+1)(s-1)! - \frac{p_{s+3,s-1}}{p_{s+3,s+3}} \mu_{s+1}
\]

Substituting (A.2), (A.3), and (A.4) back to (A.1) yields

\[
K^{(2)}(x) = \frac{(-1)^{\lfloor s/2 \rfloor + 1} p_{s-1,s-1}}{||P_{s-1}||^2} \left\{ p_{s-1}(x) = \frac{(2s+3)(s-1)!}{2(2s+5)(s+1)!} P_{s+1}(x) \right. \\
\left. + \frac{(2s+1)(s-1)!}{16(2s+5)(s+3)!} P_{s+3}(x) \right\}
\]

Expanding \(P_{s-1}(x), P_{s+1}, \) and \(P_{s+3}(x)\) in the above display using

\[
P_i(x) = \sum_{j=[(i+1)/2]}^{i} \frac{j!}{j!(i-j)!} (-1)^j x^{2j-i} \quad \|_{-1 \leq x \leq 1}, \quad i = 0, 1, 2, \ldots
\]

we obtain, for \(-1 \leq x \leq 1,\)

\[
K^{(2)}(x) = \frac{(-1)^{\lfloor s/2 \rfloor + 1} p_{s-1,s-1}}{||P_{s-1}||^2} \left\{ \sum_{j=[s/2]}^{s-1} \frac{(-1)^j (s-1)! (2j)!}{(s-j-1)! (2j-s+1)!} x^{2j-s+1} \\
- \frac{(2s+3)(s-1)!}{2(2s+5)(s+1)!} \sum_{j=[s/2]}^{s} \frac{(-1)^{j+1} (s+1)! (2j+2)!}{(j+1)! (s-j)! (2j-s+1)!} x^{2j-s+1} \\
+ \frac{(2s+1)(s-1)!}{16(2s+5)(s+3)!} \sum_{j=[s/2]}^{s+3} \frac{(-1)^{j+2} (s+3)! (2j+4)!}{(j+2)! (s-j)! (2j-s+1)!} x^{2j-s+1} \right\}
\]

\[
= \sum_{j=[s/2]}^{s-1} \frac{(-1)^{j+\lfloor s/2 \rfloor + 1} p_{s-1,s-1}}{||P_{s-1}||^2} \frac{(s-1)! (2j)!}{(s-j-1)! (2j-s+1)!} x^{2j-s+1} \\
\times \left[1 + \frac{(2s+3)(2j+1)}{(2s+5)(s-j)} \left\{ 1 + \frac{(2s+3)(2j+3)}{4(2s+3)(s-j+1)} \right\} x^{2j-s+1} \\
+ \frac{(-1)^{\lfloor s/2 \rfloor + 1} p_{s-1,s-1}}{8 ||P_{s-1}||^2} \frac{(s+1)! (2s+3)!}{(s+1)! (2s+3)!(s+3)!} x^{2j-s+1} \right]^2.
\]
Since
\[\|P_i\|^2 = \int_{-1}^1 P_i(x)^2 \, dx = \frac{2^{2i+1}i!^2}{2i+1}, \]
the last expression of \(K^{(2)}(x) \) reduces to, for \(-1 \leq x \leq 1,\)
\[K^{(2)}(x) = \frac{(-1)^{[s/2]+1}(2s + 3)!}{2^{s+3}(s - 1)!s!} \sum_{j=\lfloor s/2 \rfloor}^{s+1} \frac{(-1)^j(2j)!}{j!(s - j + 1)!(2j - s + 1)!} x^{2j-s+1} \]
as given in (2.4).

It remains to check that this \(K^{(2)} \) fulfills Conditions 3, 5, and 6 of assumption \(C_{1,s} \). By
the construction and the fact that \(K^{(2)} \) is an even degree polynomial, obviously Condition
holds. Condition 5 is also satisfied since \(K^{(2)}(0) \neq 0 \). In addition, one can see that the
unique global minimum of \(K^{(2)} \) occurs at zero. This together with \(K^{(2)}(-1) = K^{(2)}(1) = 0 \)
ensure Condition 6.

Proof of Lemma 1. We start by the case where \(f \in F_2(a) \) (i.e., \(s = 2 \)). Changing
variable in (2.1) and integrating by parts using assumption \(C_{1,2} \) gives:
\[k_h(t) = -h^{-2} \int_{-1}^1 f'(t + hx)K^{(2)}(x) \, dx. \] (A.5)

(a) For \(t \) such that \(|t - \theta| < h\), let \(\tau = (\theta - t)/h, \ -1 \leq \tau \leq 1, \) and write (A.5) in two
parts
\[k_h(t) = -h^{-2} \int_{-h}^h f'(t + hx)K^{(2)}(x) \, dx - h^{-2} \int_{\tau}^1 f'(t + hx)K^{(2)}(x) \, dx. \] (A.6)

Introducing \(f'(-\theta) \) and \(f'(\theta) \) inside the first (resp. second) integral on the left-hand side
of (A.6)
\[k_h(t) = -h^{-2} \int_{-1}^{\tau} K^{(2)}(x)f'(-\theta) \, dx - h^{-2} \int_{\tau}^1 K^{(2)}(x)f'(\theta) \, dx + J_h(t), \] (A.7)
where
\[J_h(t) = -h^{-2} \int_{-1}^{\tau} \left(f'(t + hx) - f'(-\theta) \right) K^{(2)}(x) \, dx - h^{-2} \int_{\tau}^1 \left(f'(t + hx) - f'(\theta) \right) K^{(2)}(x) \, dx. \]

It follows from (A.7) that
\[k_h(t) = -h^{-2} f'(-\theta) K^{(1)}(-1) \bigg|_{-1}^\tau - h^{-2} f'(\theta) K^{(1)}(1) \bigg|_{\tau}^1 + J_h(t). \]

Since \(f' \) has a jump at \(\theta \) we have
\[k_h(t) = h^{-2} K^{(1)}(\tau) f'(\theta) + J_h(t). \] (A.8)
First, we bound \(J_h(t) \) using (1.3) with \(s = 2 \) and \(|f^{(2)}(\theta)| \leq L \), for all \(t : |t - \theta| < h \), \(|J_h(t)| \leq 2Lh^{-1} \int_{-1}^{1} [(1 + x)|K^{(2)}(x)|]dx = c_3h^{-1} \). At \(t = \theta \), \(r = 0 \) and since \(K^{(1)}(0) = 0 \), \(k_h(\theta) = J_h(\theta) \) which proves bound \((a)\) with \(s = 2 \).

\((b) \) For \(t \in \lambda, h, \delta < |t - \theta| < qh \) and \(|r| \in [\delta/q, q] \). Using this, (1.2) and assumption \(C_{1,2} \) we see that the first term in the right-hand side of (A.8) satisfies
\[
|t| |\frac{\delta}{h} - 1| \geq h^{-2} |t| |\frac{\delta}{h} - 1| \geq \frac{h^{-2}}{\delta} |\frac{\delta}{h} - 1| \geq \frac{h^{-2}}{\delta} \frac{1}{\delta} \geq \frac{1}{\delta^2} \frac{h^{-2}}{\delta} \geq \frac{h^{-2}}{\delta^2} \frac{1}{\delta} \geq \frac{1}{\delta^3} \frac{h^{-2}}{\delta} \geq \frac{1}{\delta^3} c_4 h^{-1} \geq c_4 \delta h^{-3}.
\]
which proves bound \((b)\) with \(s = 2 \).

\((c) \) Starting from (A.5) and using assumption \(C_{1,2} \) we write
\[
k_h(t) = -h^{-2} \int_{-1}^{1} (f'(t + h x) - f'(t))K^{(2)}(x)dx.
\]
As with \([J_h(t)]\), it follows that \(|k_h(t)| \leq c_5 h^{-1} \) as had to be proved.

If \(f \in F_{s}(a) \) with \(s \geq 3 \), we derive the same bounds by exploiting extra smoothness assumption (1.3) provided that the kernel satisfy the vanishing moments property 4 of \(C_{1,s} \).

ACKNOWLEDGMENTS

We would like to thank the editor for helpful suggestions which improved the motivations and clarity of this article. This project began while Marc Raimondo visited National Taiwan University, funded by the Mathematics Division of the National Center of Theoretical Sciences (Taipei).

[Received June 2006. Revised June 2007.]

REFERENCES

